MATH 512, FALL 14 COMBINATORIAL SET THEORY WEEK 2

Definition 1. A cardinal κ is measurable of there exists a non-principal, κ -complete ultrafilter on κ .

Note that if U is such an ultrafilter, then every $X \in U$ has size κ . (Otherwise X would be the union of less than κ -many singletons.) Similarly, for every $\gamma < \kappa, \ \kappa \setminus \gamma \in U$.

Lemma 2. Suppose that κ is measurable. Then κ is inaccessible.

Proof. Let U be a non-principal, κ -complete ultrafilter on κ . If κ were singular, then for some $\tau < \kappa, \ \kappa = \subset_{i < \tau} X_i$ where every $|X_i| < \kappa$. But then by κ -completeness, for some $i, X_i \in U$. Contradiction. So κ is regular.

To show string limit, suppose that for some $\tau < \kappa, 2^{\tau} \ge \kappa$. Let $\{A_{\eta} \mid \eta < \tau\}$ κ } be distinct subsets of τ with $\bigcup_{\eta < \kappa} A_{\eta} = \tau$. For every $\alpha < \tau$, define:

- $\label{eq:constraint} \begin{array}{l} \bullet \ X_{\alpha}^{+} := \{\eta < \kappa \mid \alpha \in A_{\eta}\}; \\ \bullet \ X_{\alpha}^{-} := \{\eta < \kappa \mid \alpha \not\in A_{\eta}\}. \end{array}$

For each α , one of these is in U, so let X_{α} be that set. By κ -completeness, $X := \bigcap \alpha < \tau X_{\alpha} \in U$. Let $A := \{\alpha < \tau \mid X_{\alpha}^+ \in U\}$, and let $\eta \in X$. Then:

- if $\alpha \in A$, then $\eta \in X_{\alpha}^+$, and so $\alpha \in A_{\eta}$, and
- if $\alpha \notin A$, then $\eta \in X_{\alpha}^{-}$, and so $\alpha \notin A_{\eta}$.

So $A = A_{\eta}$. But similarly, if $\delta \in X$, then $A = A_{\delta} = A_{\eta}$, $\delta = \eta$. So, X is a singleton. Contradiction.

Lemma 3. Suppose that κ is measurable, then there is a non-principal, κ -complete, normal ultrafilter on κ .

Proof. Let U be a non-principal, κ -complete ultrafilter on κ . For functions $f, g: \kappa \to \kappa$, let $f <_U g$ mean that $\{\alpha \mid f(\alpha) < g(\alpha)\} \in U$. Since U is κ -complete, we have that $<_U$ is well-founded. So let f be $<_U$ -minimal, such that for all $\gamma < \kappa$, $\{\alpha \mid \gamma < f(\alpha)\} \in U$. Define $D := \{X \subset \kappa \mid f^{-1}(X) \in U\}$. It is routine to check that D is a non-principal, κ -complete ultrafilter. We will show normality.

Suppose that $A \in D$ and $h: A \to \kappa$ is regressive. Let $q(\alpha) = h(f(\alpha))$ if $\alpha \in A$ and $g(\alpha) = 0$ otherwise. Then $g_U f$, so there is some $\gamma < \kappa$, such that $\{\alpha \mid \gamma \geq g(\alpha)\} \in U$. Then by κ -completeness of U, there is some $\beta \leq \gamma$, such that $\{\alpha \mid \beta = g(\alpha)\} \in U$. Then $\{\alpha \in A \mid h(\alpha) = \beta\} \in D$.

Lemma 4. κ is a measurable iff there is an elementary nontrivial embedding $j: V \to M$ with critical point κ and $M^{\kappa} \subset M$.

Proof. For the first direction, if U is a measure on κ , let $j: V \to Ult(V, U)$ be given by $j(x) = [c_x]_U$. Here c_x is the constant function with value x. Then, $\phi(x_1, ..., x_n)$ holds in V iff $\{\alpha \mid \phi(c_{x_1}(\alpha), ..., c_{x_n}(\alpha))\} = \kappa \in U$ iff (by Los), $M \models \phi(x(x_1), \dots, j(x_n))$. So, j is elementary. Also since U is κ -complete, the ultrapower Ult(V, U) is wellfounded, so we can identify it with its transitive collapse.

Claim 5. For all $\alpha < \kappa$, $j(\alpha) = \alpha$.

Proof. By induction on $\alpha < \kappa$. Suppose that $\beta < \kappa$, and for all $\alpha < \beta$, $j(\alpha) = [c_{\alpha}]_U = \alpha$. If $\beta = \alpha + 1$, by elementarity, $j(\beta) = j(\alpha) + 1 = \alpha + 1$. Suppose that β is limit. First, for every $\alpha < \beta$, $\alpha = [c_{\alpha}] <_U [c_{\beta}]_U$, so $\beta \leq [c_{\beta}]_U$. Also, if $[f]_U < [c_{\beta}]_U$, then $\{\gamma \mid f(\gamma) < \beta\} \in U$. Since U is κ -complete, for some $\alpha < \beta$, $\{\gamma \mid f(\gamma) = \alpha\} \in U$, i.e. $[f]_U = [c_\alpha]_U$. So $[c_{\beta}]_U = \sup_{\alpha < \beta} [c_{\alpha}] = \sup_{\alpha < \beta} \alpha = \beta.$

Let $id : \kappa \to \kappa$ be given by $id(\alpha) = \alpha$ for all α .

Claim 6. $\kappa \leq [id] < j(\kappa)$.

Proof. If $\gamma < \kappa$, then by the above claim $\gamma = [c_{\gamma}] < [id]$. The latter is because $\{\alpha < \kappa \mid \gamma > \alpha\} \in U$. So, $\kappa = \sup_{\gamma < \kappa} \gamma = \sup_{\gamma < \kappa} [c_{\gamma}]_U \leq [id]$. Also, since $\{\alpha < \kappa \mid id(\alpha) < c_{\kappa}(\alpha)\} = \kappa \in U$, we get $[id] < j(\kappa)$.

It follows that the critical point of j is κ . The last thing to show is that $M^{\kappa} \subset M$. For that, suppose that $\langle [f_i] \mid i < \kappa \rangle$ is a sequence of elements in M. Let $f: \kappa \to V$ be $f(\alpha) = \langle f_i(\alpha) \mid i < \alpha \rangle$. Then $[f] \in M$. Also since every $f(\alpha)$ is a sequence of length α , by Los's theorem, in M, [f] is a sequence of length κ . Also, in V, $\{\alpha < \kappa \mid \text{ the } i - \text{th element of } f(\alpha) =$ $f_i(\alpha) = \{ \alpha < \kappa \mid i < \alpha \} \in U$. So, by Los, the *i*-th element of the sequence [f] is exactly $[f_i]$. It follows that $[f] = \langle [f_i] \mid i < \kappa \rangle \in M$.

For the other direction, given an embedding $j: V \to M$, let $U := \{X \subset X \in Y\}$ $\kappa \mid \kappa \in j(X)$. It is straightforward by elementarity to check that U is an ultrafilter. For κ -completeness: suppose that $\tau < \kappa$ and $\langle X_{\alpha} \mid \alpha < \tau \rangle$ are sets in U. Then for every α , $\kappa \in j(X_{\alpha})$. Since $j(\tau) = \tau$, we have that $j(\langle X_{\alpha} \mid \alpha < \tau \rangle) = \langle j(X_{\alpha}) \mid \alpha < \tau \rangle$. Then $\kappa \in \bigcup_{\alpha < \tau} j(X_{\alpha}) = j(\bigcup_{\alpha < \tau} X_{\alpha})$, and so $\bigcup_{\alpha < \tau} X_{\alpha} \in U$.

For normality, suppose that $f: \kappa \to \kappa$ is a regressive function, i.e. X = $\{\alpha \mid f(\alpha) < \alpha\} \in U$. Then $\kappa \in j(X)$, and so $jf(\kappa) < \kappa$. It follows that for some $\gamma < \kappa$, $jf(\kappa) = \gamma$. Let $Y := \{\alpha \mid f(\alpha) = \gamma\}$. Then $\kappa \in j(Y)$, which means that $Y \in U$.

If U is a measure on κ , j_U denotes the embedding $x \mapsto [c_x]_U$. Since the ultrapower is well founded, we will identify Ult(V, U) with its transitive collapse M, and write $j = j_U : V \to M \simeq Ult(V, U)$ for the embedding.

Lemma 7. Suppose that κ is measurable and $j: V \to M \simeq Ult(V, U)$ is an elementary embedding as above. Then $\kappa = [id]$ iff U is normal.

Proof. We already saw that $\kappa \leq [id]$. Then $\kappa = [id]$ iff for all [f] < [id], there is some $\gamma < \kappa$, such that $[f] = \gamma$ iff for all regressive functions $f : \kappa \to \kappa$, there is some γ , such that $\{\alpha < \kappa \mid f(\alpha) = \gamma\} \in U$ iff U is normal.

Note that this implies that if U is a normal measure, and $j = j_U : V \to M \simeq Ult(V, U)$, then $U = \{X \subset \kappa \mid \kappa \in j(X)\}.$

Lemma 8. If κ is measurable and U is a normal measure on κ , then:

- U extends the club filter i.e. every club is in U, and
 - if $X \in U$, then X is stationary.

Proof. Let U be a normal measure on κ , and $j: V \to M \simeq Ult(V, U)$ be the embedding obtained from U. If C is a club, then $j^{"}C = C \in M$ is unbounded in κ . So, in M, j(C) is a club in $j(\kappa)$, and κ is a limit point of j(C). It follows that $\kappa \in j(C)$, and so $C \in U$. For the second assertion, suppose that $X \in U$. Then for any club $C \subset \kappa, \kappa \in j(C) \cap j(X)$. So by elementarity $X \cap C \neq \emptyset$.

Lemma 9. If κ is measurable, then κ is Mahlo.

Proof. Let $j: V \to M$ be an elementary embedding with critical point κ , and $M^{\kappa} \subset M$. Let $Reg := \{\alpha < \kappa \mid \alpha \text{ is regular}\}$. Since κ is regular in V and $M^{\kappa} \subset M$, then $M \models \kappa$ is regular. So, $\kappa \in j(Reg)$, and so $Reg \in U$. And since every measure one set is stationary, it follows that κ is Mahlo. \Box

Lemma 10. If κ is measurable, then κ has the tree property.

Proof. Let $j: V \to M$ be an elementary embedding with critical point κ , and $M^{\kappa} \subset M$. Let T be a tree of height κ and levels of size less than κ . Then in M, j(T) is a tree of height $j(\kappa)$. Note that if $\alpha < \kappa$, then the α -th level of T, T_{α} has size less than κ . So $j(T_{\alpha}) = T_{\alpha}$. I.e. for all $\alpha < \kappa$, α -th level of j(T) is the same as the α -th level of T.

Let $u \in j(T)$ be a node of level κ . Let b be the set of predecessors of u. Then b is a branch through j(T) of order type κ . Also for any $x \in b$, for some α , x belongs to the α -th level of j(T), i.e. $x \in T_{\alpha}$. Also by elementarity, b is linearly ordered and meets every level of T. It follows that b is an unbounded branch through T.

As a corollary we get that measurable cardinals are weakly compact.

 \square

WEEK 2